

FUNCTION AND INEQUALITY AND QUADRATIC EQUATION

- Which one of the following is a 1. representation (not to scale and in bold) of all values of x satisfying the inequality
 - $2-5x \le \frac{6x-5}{3}$ on the real number line?
 - (A)

- If $f(x) = 2 \ln(\sqrt{e^x})$, what is the area 2. bounded by f(x) for the interval [0, 2] on the x-axis
 - (A) 1/2
- (B) 1
- (C) 2
- (D) 4
- 3. Consider the following inequalities.
 - (i) 3p q < 4
 - (ii) 3q p < 12

Which one of the following expressions below satisfies the above two inequalities?

(A)
$$p + q < 8$$

- (B) p + q = 8
- (C) $8 \le p + q < 16$
- (D) $p + q \ge 16$
- 4. A function y(x) is defined in the interval [0,1] on the x-axis as

$$y(x) = \begin{cases} 2 \text{ if } 0 \le x < \frac{1}{3} \\ 3 \text{ if } \frac{1}{3} \le x < \frac{3}{4} \\ 1 \text{ if } \frac{3}{4} \le x \le 1 \end{cases}$$

Which one of the following is the area under the curve for the interval [0,1] on the x-axis?

- (A) 5/6
- (B) 6/5
- (C) 13/6 RADUA (D) 6/13
- 5. Let r be a root of the equation $x^2 + 2x + 6 = 0$.

Then the value of the expression

$$(r+2)(r+3)(r+4)(r+5)$$
 is

- (A) 51
- (B) -51
- (C) 126
- (D) -126
- 6. Two straight lines pass through the origin $(x_0, y_0) = (0,0)$. One of them passes through the point $(x_1, y_1) =$ (1,3) and the other passes through the point $(x_2, y_2) = (1,2)$.

What is the area enclosed between the straight lines in the interval [0,1] on the x-axis?

- (A) 0.5
- (B) 1.0
- (C) 1.5
- (D) 2.0
- 7. Consider the following inequalities,
 - (i) 2x 1 > 7
 - (ii) 2x 9 < 1

Which one of the following expressions below satisfies the above two inequalities?

- (A) $x \le -4$
- (C) 4 < x < 5
- Four points P(0,1), Q(0,-3), R(-2,-1), 8. and S(2, -1) represent the vertices of a quadrilateral. What is the area enclosed by the quadrilateral?

 - (A) 4
- (B) $4\sqrt{2}$
- If $\left(x \frac{1}{2}\right)^2 \left(x \frac{3}{2}\right)^2 = x + 2$, then the value of x is
 - (A) 2
- (B) 4
- (C) 6
- (D) 8
- 10. A super additive function $f(\cdot)$ satisfies the following property $f(x_1 + x_2) \ge f(x_1) + f(x_2)$

- Which of the following functions is a super additive function for x > 1?
 - (A) e^x
- (B) \sqrt{x}
- (C) 1/x
- (D) e^{-x}
- 11. a, b, c are real number. The quadratic equation $ax^2 - bx + c = 0$ has equal roots, which is β , then
 - (A) $\beta = b/a$
 - (B) $\beta^2 = ac$
 - (C) $\beta^3 = bc/(2a^2)$
 - (D) $b^2 \neq 4ac$
- Consider the following equations of 12. straight lines:
 - Line L1: 2x 3y = 5
 - Line L2: 3x + 2y = 8
 - Line L3: 4x 6y = 5
 - Line L4: 6x 9y = 6
- Which one among the following is the (C) 8 A O $\sqrt{(D)}$ 8 $\sqrt{2}$ O P | E Leo | Correct statement?
 - (A) L1 is parallel to L2 and L1 is perpendicular to L3
 - (B) L2 is parallel to L4 and L2 is perpendicular to L1
 - (C) L3 is perpendicular to L4 and L3 is parallel to L2
 - (D) L4 is perpendicular to L2 and L4 is parallel to L3

Assignment

General Aptitude

Answer key:

1	С
2	С
3	A
4	С
5	D
6	A

7	С
8	С
9	В
10	A
11	С
12	D

IITians GATE C L A S S E S

EXCLUSIVE GATE COACHING BY IIT/IISC GRADUATES

A division of PhIE Learning Center